
OSG-CAF - A single point of submission for CDF to the Open Science Grid

M. Norman, S-C. Hsu, E. Lipeles, M. Neubauer, F. Würthwein
University of California, San Diego, USA

I. Sfiligoi, INFN Frascati, Italy
S. Sarkar, INFN-CNAF, Bologna, Italy

Abstract

The increasing luminosity of the Tevatron collider is
causing the computing requirements for data analysis and
MC production to grow rapidly. In order to meet future
demands, CDF is moving from dedicated to shared, Grid,
resources. Moreover, a significant fraction of opportunis-
tic Grid resources is expected to be available to CDF be-
fore the LHC era starts and CDF could greatly benefit from
using them. CDF is therefore reorganizing its computing
model to be integrated with the new Grid model. In the case
of Open Science Grid (OSG), CDF has extended its CDF
Analysis Farm (CAF) infrastructure by using Condor glide-
in and Generic Connection Brokering (GCB) to produce a
CDF portal to the OSG that has an identical user interface
to the CAF infrastructure used for submissions to the exist-
ing CDF dedicated resources, including its semi-interactive
monitoring tools. This talk presents the architecture of the
OSG-CAF and its current state-of-the-art implementation.
We also present the issues we have found in deploying the
system, as well as the solution we adopted to overcome
them. Finally, we show our early prototype which harvests
the opportunistically schedulable resources on the OSG in
ways that are transparent to the CDF user community.

THE CDF COMPUTING MODEL

Development and History

The Collider Detector at Fermilab (CDF) is a detector on
the Tevatron, currently the world’s highest energy particle
collider. The CDF detector was thoroughly upgraded, and
began its Run II phase in 2001. At that time, a new com-
puting model was drafted for CDF to meet the challenges
of a higher luminosities and a larger collaboration.

The computing plan evolved to include two separate
pieces under the title of the CDF Analsysis Farms (CAFs).
Computing resources on-site at Fermilab form the heart of
the CAF, comprising some 800 nodes, with direct access
to CDF data stored in diskpool or on tape [2]. Off-site
computing resources, the dCAFs, consist of smaller pools
at various institutions available to CDF users, but without
the access to the data handling system enjoyed by on-site
nodes [3]. The dCAF system proved successful, currently
involving over ten sites on three continent, and is used pri-
marily for MC production which frees more resources at
FNAL for data analysis.

Motivations to the Grid

With time CDF has had to re-evaluate its computing
plan. Increases in Tevatron luminosity and the CDF collab-
oration have increased its computing requirements. Mean-
while, it becomes increasingly impractical to continue to
construct large, dedicated computing facilities for CDF, es-
pecially as CDF nears the end of its operational life. Man-
agement with more than approximately ten dCAFs also
becomes a substantial overhead. While this is happen-
ing, many of the original difficulties with running in the
grid paradigm have disappeared. Recent developments al-
low for data transfer to distributed computing sites, and in-
creased organization has lead to greater utility.

As the LHC era nears, the spurt of Grid activity has
demonstrated the feasibility of truly distributed computing.
It is time for CDF to move to the Grid.

First Steps to the Grid: GlideCAF

The first major step onto the Grid was accomplished by
use of the GlideCAF system.

A standard dCAF is a Condor-based [1] dedicated cluster
with two major components: a CDF portal consisting of
several daemons and a Condor pool. The portal acts as an
interface to the Condor pool for CDF users. This requires
the dCAF admin to simultaneously manage the headnode
and the worker nodes.

In the GlideCAF, only one node is under the control of
CDF: the headnode. The Condor pool is dynamically cre-
ated out of another Grid pool via the submission of Condor
glide-ins. More details can be found in [4] and [5].

GlideCAFs have been successfully deployed at several
sites, however the sheer number of portals is becoming a
problem.

OSG-CAF

The Concept

The OSG-CAF has been visualized as a single point of
submission portal for CDF users to access the Grid without
ever needing to learn any of the Grid protocols. The basic
idea was to make it look and feel like any other CAF portal,
where a single headnode would be capable of running jobs
on all OSG sites.

Since we did not want to reinvent the wheel, we used the
GlideCAF as a starting point. However, the basic Glide-
CAF inrastructure had several problems:



• The headnode must be located near the worker nodes,
since Condor uses two way UDP traffic to commu-
nicate between the headnode and the worker nodes,
making it impossible to work over firewalls. While
this is feasable for major sites, it would effectively
prevent us to gain access to smaller sites.

• Every user job comes with a tarball to transfer. Given
the large sizes possible for user tarballs, mass trans-
mission over the WAN (as is currently done locally) is
impractical

• Most CDF jobs require access to the CDF software
distribution. At presently deployed GlideCAFs, a
shared file system is used for this.

• The base GlideCAF system has inbuilt scaling prob-
lems past a few thousand VMs.

All the above problems have been addressed, and the so-
lutions are presented below.

Firewall Routing: GCB

Site firewalls and security settings have been the primary
difficulty for this venture. Without the ability to communi-
cate with a glide-in hosted on an OSG site, the OSG-CAF
is worthless. Fortunately, Condor has recently deployed
a tool called Generic Connection Brokering (GCB) [6].
OSG-CAF uses a GCB server, placed on a node with in-
coming network access, to allow cross-firewall communi-
cation. Upon initiation, a glide-in will open a persistent
TCP connection to the GCB server at the same time it calls-
out to register with the Condor Central Manager (CM). Any
time a Condor daemon needs to talk to the glide-in, instead
of trying to talk directly to the glide-in, it will issue a call
to the GCB server. The GCB server will then transmit an
instruction to the glide-in, and the glide-in itself will open a
connection to the correct daemon to allow communication.

Figure 1: GCB layout

GCB is very flexible-the GCB server can be set up any-
where in the world, as long as it accepts traffic. For scal-
ability reasons, several different GCB servers can be in-
stalled on different machines. GCB also supports strong
authentication, running right now with GSI. Kerberos sup-
port is still a possibility for future upgrades. Additionally,
should we encounter a strict site which allows neither calls
in nor calls out, a GCB server can be established at each
end to allow signal routing, restoring communication.

Reducing WAN Traffic: HTTP Caching

Another large constraint is distributing user tarballs over
the WAN to Grid sites. Due to the nature of CDF analy-
sis, some tarballs can approach sizes of 250MB, with one
tarball being used by hundreds of parallel sections. In the
GlideCAF model, the tarball is copied from the head to
the worker node for each and every section, which is obvi-
ously unfeasable over the WAN. The solution we adopted
is based on cached HTTP transfers. In our view, a Web
server is mounted on the headnode,a HTTP cache running
near every Grid site and the tarball is pulled to the worker
nodes using a standard command line web tool.

Figure 2: Tarball transfer via HTTP

Since HTTP transfer is a widely used and well devel-
oped technology, it has been easy to adapt to our purposes.
HTTP’s true advantage, however, is that both HTTP servers
(Apache) and HTTP caches (Squid) are readily available.
By caching tarballs locally to the site, we can dramatically
reduce WAN traffice by making the majority of transfers
purely local. Additionally, an HTTP cache running on a
node near the headnode can decrease traffic to dozens of
distributed grid sites.

Installing and maintaining a central Web server and in-
strumenting the CAF wrapper to pull the tarball via web
tool was simple. The real problem lies in getting a HTTP
cache near each and every site. The best scenario for us
would be if the HTTP cache is installed and maintained by
the site admins. To this end, we are working on a proposal
to include a SQUID cache as part of the next major OSG re-
lease. However, when this is not possible, such a cache can
be installed outside the site,but still nearby network-wise.
It is also worth mentioning, that for small sites the cache is
often not needed in the first place, drastically reducing the
problem.

CDF Code Deployment: Parrot

Most CDF jobs require access to the CDF software
distribution to work. Although CDF has created self-
contained tarballs for the most used applications, like the
production simulation jobs, the number of other use cases
make this path unfeasable. In order to accomodate those
use cases, we have looked at ways to access the CDF soft-
ware distribution while running on Grid worker nodes.

The most obvious solution would be to install and main-
tain a copy of the distribution on each and every site. Apart
from the fact that we have no guarantee to have enough
space to host the whole distribution on each and every



site, maintaining such a huge number of copies around the
world becomes a maintanance nightmare.

Instead, we decided to use Parrot over HTTP. Parrot is an
application that traps user executable I/O calls and reroutes
those that meet its specifications. By exporting the CDF
software distribution via a Web server, Parrot can route
read calls from any executable to those web pages. In other
words, Parrot can essentially “mount” files stored on a web
server as if they were on a local disk partition, without
the need for root priviledges. Paired together with HTTP
caching, this makes software distribution an easy task. See
[7] for more details.

Scalability: Condor-C

The primary limitation for scalability is the single
headnode. Most CAF headnodes run a single schedd,
which tracks and manages all job sections. Jobs are sub-
mitted as DAGMans, which then submit the individual sec-
tions. Tests on our production system reveal that a single
schedd, with hundreds of users to track, is not scalable past
approximately 2500 running sections. This will not suit our
computing needs for the Grid.

One possible solution is to switch to multiple schedds,
using one schedd for submitting the DAGMans, while the
sections are distributed between the other schedds. This
scales much better, but requires high end hardware, both in
terms of number of CPUs and amount of available memory.

Since we wanted to use commodity hardware whenever
possible, we started looking for an alternative solution.
The most obvious step was to distribute the schedds over
multiple nodes, reducing the requirements for those nodes.
However, in order to maintain sequential non-overlaping
job IDs, all DAGMan submissions need to go to the main
schedd.

Unfortunatelly, one cannot just plainly submit the DAG-
Mans and make them submit the sections to schedds run-
ning on other nodes. So we resolved to use Condor-C. By
using Condor-C, we can make our primary schedd, upon
reception of a job, immediately reroute the DAGMan to a
schedd on another machine. The DAGman will actually
start on that other machine and spawn the sections to that
same local schedd. All the load of that job is thus confined
to that other node, while the load on the headnode is mini-
mal.

Using multiple nodes increases stability, too. Using
Condor’s High Availablity features, any node can go down
without losing the pool, including the headnode.

OSG-CAF PERFORMANCE

So far the OSG-CAF has been operated on a testing-only
basis, as it is too small scale for production jobs. Part of
this is due to the effort necessary to obtain enough open
slots on OSG sites for full load testing. However, testing
has proceeded at the low load level. Jobs can be submitted
from the desktop of any CDF user, using kerberos authen-
tication, and then distributed to glide-ins running at various

Figure 3: The OSG-CAF

OSG sites from SDSC to Wisconsin. No untoward prob-
lems have yet been discovered with this system.

GCB Performance

GCB was tested at Fermilab using a Condor Central
Manager on one machine communicated strictly via a GCB
server on a separate node. Tests were performed in which
Condor glide-ins were submitted to various OSG sites with
firewall protections. Although glide-ins could not previ-
ously communicate through those firewalls, it was found
that they could connect via GCB. This test has been suc-
cessful at the San Diego Supercomputer Center (SDSC),
GPFarms at Fermilab, GLOW, and UIowa. Batch jobs were
successfully submitted to these sites.

Further scaling tests for GCB will have to be run as the
opportunities present themselves.

Squid deployment

Squid daemons were tested both with test jobs at Fer-
milab and at production GlideCAFs in San Diego and
Bologna. The FNAL test is currently running on 4000 ac-
tive VMs, while the GlideCAFs have been running with
more that 1000 parrallel user sections. No issues have been
found on any of them.

Parrot Testing

Parrot has been tested at FNAL with both test and real
jobs. In these tests, jobs were able to access the CDF soft-
ware distribution and run as if it was mounted via NFS. See
[8] for more details.

Large scale testing, running on Grid nodes and including
HTTP caches, is expected to start soon.

Condor-C Scalability Testing

Condor-C is currently in testing in FNAL. It has not
yet entered production due to a slight bug with kerberos
authentication (which is required for operations on-site),
but it has been tested with up to 4000 VMs with GSI au-
thentication and has performed well. An empty cluster
of four thousand VMs fills in less than six hours without



undue strain on the Condor Cental Manager. When com-
bined with High Availability it has also proven resilient to
headnode crashes and other system errors.

FUTURE CHALLENGES

For the near future, we are proposing the following
goals:

• Increase load testing for OSG-CAF by running more
than five hundred glide-ins simultaneously on OSG
sites

• Begin beta testing by submitting CDF MC production
jobs with the self-contained tarball through OSG-CAF

• Set up the web server necessary for code deployment
via Parrot

• Load test a local SQUID cache for tarball distribution

For a slightly longer term, our goals are:

• Open OSG-CAF for production

• Merge all the US dCAFs into the OSG-CAF

• Begin testing of data deployment via SAM/SRM
(when available)

CONCLUSIONS

CDF is on track to have a single point of submission for
the whole Open Science Grid, and is doing it without any
change in the habits of the physicists. We are building on
the success of the GlideCAF, widely deployed at this time,
and are addressing all the limits of the current system. Al-
thought the OSG-CAF is not yet in production, we expect
to open it to real users within a month.

ACKNOWLEDGMENTS

We would like to acknowledge the assistance of the OSG
management in organizing and documenting the OSG, as
well as that of the Condor team for their excellent work on
supporting their development product. Much of this work
was done with the aid of many OSG admins, especially Ter-
rence Martin at SDSC, and could not have been completed
without them.

REFERENCES

[1] http://www.cs.wisc.edu/condor/

[2] I. Sfiligoi, E. Lipeles, M. Neubauer and F. Würthwein, The
Condor based CDF CAF, CHEP ’04, Interlaken, Sep. 2004

[3] A. Sill, et. al., Globally Distributed User Analysis Computing
at CDF, CHEP ’04, Interlaken, Sep. 2004

[4] S. Sarkar and I. Sfiligoi, GlideCNAF - A Purely Condor
Glide-in Based CAF, CDF Note 7630 (2005)

[5] S. Sarkar et. al., GlideCAF - A Late-binding Approach to the
Grid, CHEP ’06, Mumbai, Feb. 2006

[6] http://www.cs.wisc.edu/ sschang/firewall/gcb/

[7] D. Thain and M. Livny, Experience with Parrot: User-
Level Transparent Middleware for Data-Intensive Comput-
ing, in Workshop on Adaptive Grid Middleware, New Or-
leans, September 2003

[8] D. Thain, C. Moretti, and I. Sfiligoi, Transparently Distribut-
ing CDF Software with Parrot, CHEP ’06, Mumbai, February
2006


